Quantile regression modeling of latent trajectory features with longitudinal data
نویسندگان
چکیده
منابع مشابه
Quantile Regression for Longitudinal Data
The penalized least squares interpretation of the classical random effects estimator suggests a possible way forward for quantile regression models with a large number of “fixed effects”. The introduction of a large number of individual fixed effects can significantly inflate the variability of estimates of other covariate effects. Regularization, or shrinkage of these individual effects toward...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملQuantile Regression Estimation of Nonlinear Longitudinal Data
This paper examines a weighted version of the quantile regression estimator defined by Koenker and Bassett (1978), adjusted to the case of nonlinear longitudinal data. Different weights are used and compared by computer simulation using a four-parameter logistic growth function and error terms following an AR(1) model. It is found that the estimator is performing quite well, especially for the ...
متن کاملBayesian quantile regression for longitudinal studies with nonignorable missing data.
We study quantile regression (QR) for longitudinal measurements with nonignorable intermittent missing data and dropout. Compared to conventional mean regression, quantile regression can characterize the entire conditional distribution of the outcome variable, and is more robust to outliers and misspecification of the error distribution. We account for the within-subject correlation by introduc...
متن کاملEfficient quantile marginal regression for longitudinal data with dropouts.
In many biomedical studies independent variables may affect the conditional distribution of the response differently in the middle as opposed to the upper or lower tail. Quantile regression evaluates diverse covariate effects on the conditional distribution of the response with quantile-specific regression coefficients. In this paper, we develop an empirical likelihood inference procedure for l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Statistics
سال: 2019
ISSN: 0266-4763,1360-0532
DOI: 10.1080/02664763.2019.1620706